Easy web publishing from R

Write R Markdown documents in RStudio.
Share them here on RPubs. (It’s free, and couldn’t be simpler!)

Get Started

Recently Published

EKONOMETRI 1 FINAL PROJESI
Bu çalışma, 2000–2023 döneminde seçilmiş yıllar için ülkeler arası kesitsel veriler kullanarak ticaret açıklığının ekonomik belirleyicilerini OLS yöntemiyle incelemektedir. Bulgular, kişi başına düşen gelirin ticaret açıklığı üzerinde genel olarak pozitif bir etkiye sahip olduğunu, ancak bu ilişkinin küresel şoklar döneminde zayıflayabildiğini göstermektedir. Sonuçlar, ticaretin belirleyicilerinin zaman içinde değişebildiğini ve kesitsel analizlerde model sınırlılıklarının dikkate alınması gerektiğini ortaya koymaktadır.
GPS Elevation Adjustement
Psi Chi R - December 2025
Final Year Solve 24-23
GENE643
Assessing Weather Event Health Harm and Economic Damage
Analyzes NOAA's Storm Data, producing visualizations of the top 6 weather causes of fatalities and injuries and of property and crop damage.
column-to-style
column-to-style feature allows binding data columns to individual item properties. Also new v.6 chart types
Daily Facebook Political Ad Spending
As of December 28, 2025
Age QPPV
Age QPPV
How to Analyze Visium HD Data with Python
A complete guide to spatial transcriptomics cell type deconvolution using FlashDeconv and the Python ecosystem.
FlashDeconv - A computational method for spatial transcriptomics deconvolution that uses structure-preserving randomized sketching to estimate cell type proportions.
Atlas-scale spatial transcriptomics requires deconvolution methods that preserve rare biological signals without prohibitive computational costs. Here, we introduce FlashDeconv, a framework built on structure-preserving randomized sketching. Unlike variance-based methods that conflate biological information with population abundance, FlashDeconv employs leverage-score importance sampling to prioritize transcriptomically distinct markers—preserving rare cell type signals that standard feature selection discards. Benchmarking demonstrates accuracy comparable to top-tier Bayesian methods while accelerating inference by orders of magnitude. Applied to human ovarian cancer cohorts, FlashDeconv reproduces clinical response signatures in seconds, enabling rapid patient stratification. This throughput also enables systematic scale-space exploration: we define a “resolution horizon” (8–16 µm) beyond which cellular co-localization signals undergo sign inversion due to geometric mixing. Operating below this horizon, FlashDeconv uncovers cryptic Tuft cell niches enriched for intestinal stem cells—biological architecture obscured by both variance-based feature selection and coarse spatial binning. FlashDeconv provides a scalable, mathematically grounded framework for atlas-scale spatial discovery.
Publish Document