gravatar

Texaschikkita

Jessica McPhaul

Recently Published

NVIDIA LIbraries
SVD_lecture_notes_ML7331_20Nov24
notes from lecture
mod14_mathematical_representation
ML7331 Module 14 - with mathematical representation
google analytics
<!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-CV2648GQMK"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-CV2648GQMK'); </script> Stream Name Texaschikkita Stream URL https://rpubs.com/Texaschikkita Stream ID 9962324179 Measurement Id G-CV2648GQMK
Duplicate for version and package testing - Finance BASICS
19 November 2024 Capstone A
Finance Basics From Capstone
Comparing Versions
arcPy intro -very basic
https://www.esri.com/training/Engine/defaultui/player/modern.html?configuration=&preventRightClick=False&cc=en-US&cache=22.16.365.0&playerConfUrl=n&registration=ApiRegistrationId%7C6615b76b8667100028944b12-167021-texaschikkita%21InstanceId%7C0&package=ApiCourseId%7C6615b76b8667100028944b12-167021%21VersionId%7C4&tracking=True&forceReview=False
I Hate This Project
Feature Class Imaging not working in argis update. Python in arc is trash. I'm gonna try R or use python with API in venv. Or just use QGIS and I'm gonna drop tthe class b c it makes me voilently angry and that's no bueno.
GPU Setup and Stuff
Basic reviews for me for setup on new system - for local use
MSYS2 Shells for C++
Comparision and use case for each of shells installed with MSYS2 for C++
GIT
gitkraken and sublime merge
ML7331_ICA5_Titanic_13_Nov_2024
compiled in r studio and run in google collab
Machine Learning - Module 12 - Nov 2024
from asynch canvas, ML documentation, and chatgpt
Intro to Python - Lesson 2
Follow up lesson to Intro to Python Step 1. From precourse work, bootcamp modules, and course edx classes.
Python Step 2
Next lesson in python. Needs some tweaking and cleaning but I'm tired and will do it later.
First Steps in Python
Intro to python - precourse work and first bootcamp lesson - December 2022. Very basic stuff. Memorize these and practice before moving on. Subsrquent lessons to follow
Env & Publishing
envs and publishing copied from quarto
Codex
Refresher on using Codex (coding Generative PreTrained Transformer). This goes with JBERTquarto doc and RMD on comp. Plan is t test and compare to JBert (jessi's bidirectional encoder repres from transformers) to compare Bert vs Gpt and make better.
ML7331_GMM_6NOV2024
from class zoom and notebook: https://colab.research.google.com/drive/1f28mnqRWI2z968JKan5U5AxpycWormen#scrollTo=R7tOqbkMturi
Group Paris - Lab 1
ML 7331 - SMU Fall 2024
Jessica's First ArcGis Map of Paris
POI, Top Restaurants, Accomodations
testing for quarto boring
testing for quarto conversions boring doc
Environment Setup For ML7331
using either mambaforge miniconda or Anaconda. Change commands to conda if using miniconda or Anaconda
jmwp
tidying up cgp
quantum simulators
rdkit
qmetc
QCB
jmcsp
ssh spd
July-2024-MQPA
working
layman comparison
Integrations with MQPA
mqpa_draft
reposting superpod
superpodModules
Passport_Dallas
guide to get expedited passport in dallas
PHYSICS
Reearch for Summer
Jessica McPhaul CV
qgan outline
summer project w Larson working outlines
hadamard Matrix in QQ
Jessica McPhaul June 9, 2024
Final_Model
Project Part 2
Applied_Statistics_6372_Jessica_McPhail_Unit_13_HW
April 8, 2024 LAST HW assignment. Stats 2. Spring 2024. Unit 13.
Stats2Project2_Objective1_FINAL NEEDS REVIEW
Jessica McPhaul Rafia Mizra Caleb Thornsbury Stas 2 Spring 2024 April 5 2024
step2-Rafia_EDA
Jessica McPhaul - 6372 - Unit-11-Homework
march 25, 2024
Jessica McPhaul - Unit 12 Pre Live Session
March 25, 2023
Jessica_McPhaul_Unit_10_HW_revised
March 18, 2024
Jessica_McPhaul_Unit_11_PLS
March 18, 20024
Jessica McPhaul - 6372 _Unit_10_PreLive
March 11, 2024
Jessica_McPhaul_6372_HW_Unit_9
March 11, 2024
Plot from homeowrk 9
# Load necessary libraries library(GGally) library(dplyr) # Check if 'censor' column exists in 'training' and 'validate' datasets if (!("censor" %in% names(training)) || !("censor" %in% names(validate))) { # Assuming 'censor' is the last column in the provided subset response_col_name <- names(training)[ncol(training)] # Recode the response variable in both training and validation sets training[[response_col_name]] <- factor(training[[response_col_name]], levels = c(0, 1), labels = c("Malignant", "Benign")) validate[[response_col_name]] <- factor(validate[[response_col_name]], levels = c(0, 1), labels = c("Malignant", "Benign")) } else { # If 'censor' exists, recode directly training$censor <- factor(training$censor, levels = c(0, 1), labels = c("Malignant", "Benign")) validate$censor <- factor(validate$censor, levels = c(0, 1), labels = c("Malignant", "Benign")) } # Generate ggpairs plot for the training data ggpairs(training, columns = 1:9, ggplot2::aes(color = response_col_name))
6372 Unit 6 HW
Unit 6 Pre Live Sessopn
6372 pre live
Project-1-6372-Life_Expectancy_Analysis
Ivan Chavez Rafia Mizra Jessica McPhaul Group Project for class using dataset from Kaggle and WHO
Plot ML together
Combine predictions into df ```{r} predictions_df <- data.frame( Actual = actual_values, ANN = predictions_ann, SVM = predictions_svm, RF = predictions_rf, KNN = predictions_knn, LM = predictions_lm ) # Convert to long format for plotting predictions_long <- predictions_df %>% pivot_longer(cols = c("ANN", "SVM", "RF", "KNN", "LM"), names_to = "Model", values_to = "Predicted") ``` Plot together ```{r} ggplot(predictions_long, aes(x = Actual, y = Predicted, colour = Model)) + geom_point() + geom_abline(intercept = 0, slope = 1, linetype = "dashed") + labs(title = "All Models: Actual vs Predicted", x = "Actual Life Expectancy", y = "Predicted Life Expectancy") + theme_minimal() + scale_colour_manual(values = c("blue", "green", "red", "purple", "orange")) ``` ML dataframe ```{r} # Combine all predictions into a single data frame predictions_df <- data.frame( Actual = actual_values, ANN = predictions_ann, SVM = predictions_svm, RF = predictions_rf, KNN = predictions_knn, LM = predictions_lm ) ``` Convert to long for plot ```{r} # Convert to long format for plotting predictions_long <- predictions_df %>% pivot_longer(cols = -Actual, names_to = "Model", values_to = "Predicted") ``` ## Plot all together: ```{r} # Plot all models together ggplot(predictions_long, aes(x = Actual, y = Predicted, colour = Model)) + geom_point() + geom_abline(intercept = 0, slope = 1, linetype = "dashed") + labs(title = "All Models: Actual vs Predicted", x = "Actual Life Expectancy", y = "Predicted Life Expectancy") + theme_minimal() + scale_colour_manual(values = c("blue", "green", "red", "purple", "orange")) ```
factor by economic status
# Load necessary libraries library(ggplot2) library(plotly) library(htmlwidgets) # 1. Create the ggplot object with the boxplot gg_boxplot <- ggplot(data, aes(x = Economy_status_Developed, y = Life_expectancy)) + geom_boxplot() + labs(title = "Boxplot of Life Expectancy by Economy Status", x = "Economy Status", y = "Life Expectancy") # 2. Convert the ggplot object to a Plotly object p_plotly <- ggplotly(gg_boxplot) # 3. Display the interactive plot in the RStudio viewer or your web browser # This will show the plot in your RStudio's viewer pane or default web browser print(p_plotly) # 4. Save the Plotly plot as an HTML file htmlwidgets::saveWidget(p_plotly, "Life_Expectancy_by_Status_Plotly.html")
Normal 1qq plot
comparative histogram
by country
Life expectancy ovedr time by countryHTML
# Load necessary libraries library(ggplot2) library(plotly) library(htmlwidgets) # Create the ggplot object gg_life_expectancy <- ggplot(data, aes(x = Year, y = Life_expectancy, group = Country, color = Country)) + geom_line(alpha = 0.5) + theme_minimal() + theme(legend.position = "none") + labs(title = "Life Expectancy over Time by Country", x = "Year", y = "Life Expectancy") # Convert the ggplot object to a Plotly object p_plotly <- ggplotly(gg_life_expectancy) # Display the interactive plot in the RStudio viewer or your web browser print(p_plotly) # Save the Plotly plot as an HTML file htmlwidgets::saveWidget(p_plotly, "Life_Expectancy_Over_Time_Plotly.html")
R Code for Interactive Pairwise Scatter Plots with Plotly HTML
# Load necessary libraries library(plotly) library(dplyr) # Select variables select_vars <- c("Life_expectancy", "Adult_mortality", "Alcohol_consumption", "GDP_per_capita", "Schooling") # Create a data frame for pairwise scatter plots pairwise_data <- data %>% select(select_vars) # Create a list to store Plotly scatter plot objects plot_list <- list() # Loop through each combination of variables for pairwise scatter plots for(i in 1:length(select_vars)) { for(j in 1:length(select_vars)) { # Avoid plotting a variable against itself if(i != j) { p <- plot_ly(pairwise_data, x = ~get(select_vars[i]), y = ~get(select_vars[j]), type = 'scatter', mode = 'markers', marker = list(size = 10, opacity = 0.5), xaxis = paste0("x", i), yaxis = paste0("y", j), name = paste(select_vars[i], "vs", select_vars[j])) plot_list[[length(plot_list) + 1]] <- p } } } # Combine all plots final_plot <- subplot(plot_list, nrows = length(select_vars), ncols = length(select_vars), shareX = TRUE, shareY = TRUE) # Display the interactive plot in the RStudio viewer or your web browser print(final_plot) # Save the Plotly plot as an HTML file htmlwidgets::saveWidget(final_plot, "Pairwise_Scatterplots_Plotly.html")
Plot - Random Forest Model
# Plot for Random Forest Model ggplot() + geom_point(aes(x = actual_values, y = predictions_rf), colour = "red") + geom_abline(intercept = 0, slope = 1, linetype = "dashed") + labs(title = "Random Forest Model: Actual vs Predicted", x = "Actual Life Expectancy", y = "Predicted Life Expectancy")
RMSE all models
# 5. Plot with box and whisker for RMSE comparison bwplot(results, metric = "RMSE")
Plot ANN model
# Plot for ANN Model ggplot() + geom_point(aes(x = actual_values, y = predictions_ann), colour = "blue") + geom_abline(intercept = 0, slope = 1, linetype = "dashed") + labs(title = "ANN Model: Actual vs Predicted", x = "Actual Life Expectancy", y = "Predicted Life Expectancy")
Plot SNM model
# Plot for SVM model ggplot() + geom_point(aes(x = actual_values, y = predictions_svm), colour = "green") + geom_abline(intercept = 0, slope = 1, linetype = "dashed") + labs(title = "SVM Model: Actual vs Predicted", x = "Actual Life Expectancy", y = "Predicted Life Expectancy")
Plot KNN Model
# PLot for KNN Model ggplot() + geom_point(aes(x = actual_values, y = predictions_knn), colour = "purple") + geom_abline(intercept = 0, slope = 1, linetype = "dashed") + labs(title = "KNN Model: Actual vs Predicted", x = "Actual Life Expectancy", y = "Predicted Life Expectancy")
LRM model plot
# Plot for LRM ggplot() + geom_point(aes(x = actual_values, y = predictions_lm), colour = "orange") + geom_abline(intercept = 0, slope = 1, linetype = "dashed") + labs(title = "Linear Regression Model: Actual vs Predicted", x = "Actual Life Expectancy", y = "Predicted Life Expectancy")
dkooC
Unit 4 Pre-Live
Analysis from both videos : https://digitalcampus.instructure.com/courses/19956/files/folder/Unit%204?preview=2861314 https://www.youtube.com/watch?v=dQ0hZQUVIqo&list=PPSV file:///C:/Users/Jessica%20M/Desktop/Project%20Presentation%20Video-3.mp4
Unit 2 Homework - 6372