Recently Published
Box Plot of US Crime Data
#Clear environment
rm(list=ls())
#set working directory
setwd("C:\\RProgs")
#set plot directory
#jpeg(file = "C:\\RProgs\\mycrimedataplots.jpeg")
#load data
uscrime=read.table("uscrime.txt",header=TRUE)
uscrime1=uscrime
#str(uscrime1)
# all Rs on top are 1s, the data is not randomized as required
#Rs random number generators for mixing up data
set.seed(3)
#summary(uscrime1)
#head(uscrime1)
#table(uscrime1$Crime)
#summary(uscrime1$Crime)
#install.packages("outliers")
for (i in 1:3)
{
cat ("The minimum value and index of Crime ", min(uscrime1$Crime), which.min(uscrime1$Crime))
cat (" The maximum value and index of Crime ", max(uscrime1$Crime), which.max(uscrime1$Crime))
print (" ")
library(car)
Boxplot(uscrime1$Crime, main = "US Crime Data" , ylab = "US Crimes",col="grey", outcol="red",id.n = Inf)
boxplot.stats(uscrime1$Crime)$out
#plot without scaling
plot(uscrime1$Crime,ylab="Crime data for US",main = "US crime data without scaling")
#plot wit scaling
plot(scale(uscrime1$Crime),ylab="Crime data for US",main = "US crime data with scaling")
library(outliers)
# one side outlier
#largest
g1 = grubbs.test(uscrime1$Crime, type = 10, opposite = FALSE, two.sided = FALSE);
print(g1)
#smallest
g2=grubbs.test(uscrime1$Crime, type = 10, opposite = TRUE, two.sided = FALSE)
print(g2)
uscrime1 = uscrime1[-which.max(uscrime1$Crime),]
summary(uscrime1$Crime)
}
#if(!is.null(dev.list())) dev.off()