Recently Published
Regression, Residuals, Spliced, Unspliced - Bmx
emb = as.matrix(og_expDat[, c("Ftsne_t2_allGenesFiltbren_1","Ftsne_t2_allGenesFiltbren_2")])
rownames(emb) <- og_expDat$V1
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
gene = "Mcam"
gene.relative.velocity.estimates(emat,
nmat,
deltaT=1,
kCells = 100,
kGenes=1,
fit.quantile=fit.quantile,
cell.emb=emb,
cell.colors=cell.colors,
cell.dist=cell.dist,
show.gene=gene,
old.fit = rvel.cd)
Regression, Residuals, Spliced, Unspliced - Sele
emb = as.matrix(og_expDat[, c("Ftsne_t2_allGenesFiltbren_1","Ftsne_t2_allGenesFiltbren_2")])
rownames(emb) <- og_expDat$V1
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
gene = "Mcam"
gene.relative.velocity.estimates(emat,
nmat,
deltaT=1,
kCells = 100,
kGenes=1,
fit.quantile=fit.quantile,
cell.emb=emb,
cell.colors=cell.colors,
cell.dist=cell.dist,
show.gene=gene,
old.fit = rvel.cd)
Regression, Residuals, Spliced, Unspliced - Selp
emb = as.matrix(og_expDat[, c("Ftsne_t2_allGenesFiltbren_1","Ftsne_t2_allGenesFiltbren_2")])
rownames(emb) <- og_expDat$V1
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
gene = "Mcam"
gene.relative.velocity.estimates(emat,
nmat,
deltaT=1,
kCells = 100,
kGenes=1,
fit.quantile=fit.quantile,
cell.emb=emb,
cell.colors=cell.colors,
cell.dist=cell.dist,
show.gene=gene,
old.fit = rvel.cd)
Regression, Residuals, Spliced, Unspliced - Vwf
emb = as.matrix(og_expDat[, c("Ftsne_t2_allGenesFiltbren_1","Ftsne_t2_allGenesFiltbren_2")])
rownames(emb) <- og_expDat$V1
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
gene = "Mcam"
gene.relative.velocity.estimates(emat,
nmat,
deltaT=1,
kCells = 100,
kGenes=1,
fit.quantile=fit.quantile,
cell.emb=emb,
cell.colors=cell.colors,
cell.dist=cell.dist,
show.gene=gene,
old.fit = rvel.cd)
Regression, Residuals, Spliced, Unspliced - Chst4
emb = as.matrix(og_expDat[, c("Ftsne_t2_allGenesFiltbren_1","Ftsne_t2_allGenesFiltbren_2")])
rownames(emb) <- og_expDat$V1
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
gene = "Mcam"
gene.relative.velocity.estimates(emat,
nmat,
deltaT=1,
kCells = 100,
kGenes=1,
fit.quantile=fit.quantile,
cell.emb=emb,
cell.colors=cell.colors,
cell.dist=cell.dist,
show.gene=gene,
old.fit = rvel.cd)
Regression, Residuals, Spliced, Unspliced - Gcnt1
emb = as.matrix(og_expDat[, c("Ftsne_t2_allGenesFiltbren_1","Ftsne_t2_allGenesFiltbren_2")])
rownames(emb) <- og_expDat$V1
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
gene = "Mcam"
gene.relative.velocity.estimates(emat,
nmat,
deltaT=1,
kCells = 100,
kGenes=1,
fit.quantile=fit.quantile,
cell.emb=emb,
cell.colors=cell.colors,
cell.dist=cell.dist,
show.gene=gene,
old.fit = rvel.cd)
Regression, Residuals, Spliced, Unspliced - Nfkbia
emb = as.matrix(og_expDat[, c("Ftsne_t2_allGenesFiltbren_1","Ftsne_t2_allGenesFiltbren_2")])
rownames(emb) <- og_expDat$V1
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
gene = "Mcam"
gene.relative.velocity.estimates(emat,
nmat,
deltaT=1,
kCells = 100,
kGenes=1,
fit.quantile=fit.quantile,
cell.emb=emb,
cell.colors=cell.colors,
cell.dist=cell.dist,
show.gene=gene,
old.fit = rvel.cd)
Regression, Residuals, Spliced, Unspliced - Cxcl12
emb = as.matrix(og_expDat[, c("Ftsne_t2_allGenesFiltbren_1","Ftsne_t2_allGenesFiltbren_2")])
rownames(emb) <- og_expDat$V1
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
gene = "Mcam"
gene.relative.velocity.estimates(emat,
nmat,
deltaT=1,
kCells = 100,
kGenes=1,
fit.quantile=fit.quantile,
cell.emb=emb,
cell.colors=cell.colors,
cell.dist=cell.dist,
show.gene=gene,
old.fit = rvel.cd)
Regression, Residuals, Spliced, Unspliced - Cdkn1a
emb = as.matrix(og_expDat[, c("Ftsne_t2_allGenesFiltbren_1","Ftsne_t2_allGenesFiltbren_2")])
rownames(emb) <- og_expDat$V1
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
gene = "Mcam"
gene.relative.velocity.estimates(emat,
nmat,
deltaT=1,
kCells = 100,
kGenes=1,
fit.quantile=fit.quantile,
cell.emb=emb,
cell.colors=cell.colors,
cell.dist=cell.dist,
show.gene=gene,
old.fit = rvel.cd)
Regression, Residuals, Spliced, Unspliced - Irf7
emb = as.matrix(og_expDat[, c("Ftsne_t2_allGenesFiltbren_1","Ftsne_t2_allGenesFiltbren_2")])
rownames(emb) <- og_expDat$V1
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
gene = "Mcam"
gene.relative.velocity.estimates(emat,
nmat,
deltaT=1,
kCells = 100,
kGenes=1,
fit.quantile=fit.quantile,
cell.emb=emb,
cell.colors=cell.colors,
cell.dist=cell.dist,
show.gene=gene,
old.fit = rvel.cd)
Regression, Residuals, Spliced, Unspliced - Cxcl9
emb = as.matrix(og_expDat[, c("Ftsne_t2_allGenesFiltbren_1","Ftsne_t2_allGenesFiltbren_2")])
rownames(emb) <- og_expDat$V1
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
gene = "Mcam"
gene.relative.velocity.estimates(emat,
nmat,
deltaT=1,
kCells = 100,
kGenes=1,
fit.quantile=fit.quantile,
cell.emb=emb,
cell.colors=cell.colors,
cell.dist=cell.dist,
show.gene=gene,
old.fit = rvel.cd)
Regression, Residuals, Spliced, Unspliced - Cxcl10
emb = as.matrix(og_expDat[, c("Ftsne_t2_allGenesFiltbren_1","Ftsne_t2_allGenesFiltbren_2")])
rownames(emb) <- og_expDat$V1
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
gene = "Mcam"
gene.relative.velocity.estimates(emat,
nmat,
deltaT=1,
kCells = 100,
kGenes=1,
fit.quantile=fit.quantile,
cell.emb=emb,
cell.colors=cell.colors,
cell.dist=cell.dist,
show.gene=gene,
old.fit = rvel.cd)
Regression, Residuals, Spliced, Unspliced - Enpp2
emb = as.matrix(og_expDat[, c("Ftsne_t2_allGenesFiltbren_1","Ftsne_t2_allGenesFiltbren_2")])
rownames(emb) <- og_expDat$V1
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
gene = "Mcam"
gene.relative.velocity.estimates(emat,
nmat,
deltaT=1,
kCells = 100,
kGenes=1,
fit.quantile=fit.quantile,
cell.emb=emb,
cell.colors=cell.colors,
cell.dist=cell.dist,
show.gene=gene,
old.fit = rvel.cd)
Regression, Residuals, Spliced, Unspliced - Vim
emb = as.matrix(og_expDat[, c("Ftsne_t2_allGenesFiltbren_1","Ftsne_t2_allGenesFiltbren_2")])
rownames(emb) <- og_expDat$V1
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
gene = "Mcam"
gene.relative.velocity.estimates(emat,
nmat,
deltaT=1,
kCells = 100,
kGenes=1,
fit.quantile=fit.quantile,
cell.emb=emb,
cell.colors=cell.colors,
cell.dist=cell.dist,
show.gene=gene,
old.fit = rvel.cd)
Regression, Residuals, Spliced, Unspliced - Cd34
emb = as.matrix(og_expDat[, c("Ftsne_t2_allGenesFiltbren_1","Ftsne_t2_allGenesFiltbren_2")])
rownames(emb) <- og_expDat$V1
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
gene = "Mcam"
gene.relative.velocity.estimates(emat,
nmat,
deltaT=1,
kCells = 100,
kGenes=1,
fit.quantile=fit.quantile,
cell.emb=emb,
cell.colors=cell.colors,
cell.dist=cell.dist,
show.gene=gene,
old.fit = rvel.cd)
Regression, Residuals, Spliced, Unspliced - Esm1
emb = as.matrix(og_expDat[, c("Ftsne_t2_allGenesFiltbren_1","Ftsne_t2_allGenesFiltbren_2")])
rownames(emb) <- og_expDat$V1
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
gene = "Mcam"
gene.relative.velocity.estimates(emat,
nmat,
deltaT=1,
kCells = 100,
kGenes=1,
fit.quantile=fit.quantile,
cell.emb=emb,
cell.colors=cell.colors,
cell.dist=cell.dist,
show.gene=gene,
old.fit = rvel.cd)
Regression, Residuals, Spliced, Unspliced - Mcam
emb = as.matrix(og_expDat[, c("Ftsne_t2_allGenesFiltbren_1","Ftsne_t2_allGenesFiltbren_2")])
rownames(emb) <- og_expDat$V1
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
gene = "Mcam"
gene.relative.velocity.estimates(emat,
nmat,
deltaT=1,
kCells = 100,
kGenes=1,
fit.quantile=fit.quantile,
cell.emb=emb,
cell.colors=cell.colors,
cell.dist=cell.dist,
show.gene=gene,
old.fit = rvel.cd)
Ratio of Average Spliced/Unspliced - Mcam
###Plot Average Spliced/Unspliced for particular genes
par(mfrow=c(2,3))
for (gene in genes){
ymax = max(avgRatio[[gene]][is.finite(avgRatio[[gene]])])
if (is.infinite(ymax)) ymax = 1
barplot(avgRatio[[gene]],
main=gene,
xlab="Clusters",
ylab="Ratio of Average Spliced/Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids,
border=T)
}
Ratio of Average Spliced/Unspliced - Cxcr4, Vlm, Cd34, Apln, Dll4, Esm1
###Plot Average Spliced/Unspliced for particular genes
par(mfrow=c(2,3))
for (gene in genes){
ymax = max(avgRatio[[gene]][is.finite(avgRatio[[gene]])])
if (is.infinite(ymax)) ymax = 1
barplot(avgRatio[[gene]],
main=gene,
xlab="Clusters",
ylab="Ratio of Average Spliced/Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids,
border=T)
}
Ratio of Average Spliced/Unspliced - Cdkn2a, Irf7, Cxcl9, Cxcl10, Enpp2, Nes
###Plot Average Spliced/Unspliced for particular genes
par(mfrow=c(2,3))
for (gene in genes){
ymax = max(avgRatio[[gene]][is.finite(avgRatio[[gene]])])
if (is.infinite(ymax)) ymax = 1
barplot(avgRatio[[gene]],
main=gene,
xlab="Clusters",
ylab="Ratio of Average Spliced/Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids,
border=T)
}
Ratio of Average Spliced/Unspliced - Dusp1, Cxcl1, Cxcl12, Id1, Id3, Cdkn1a
###Plot Average Spliced/Unspliced for particular genes
par(mfrow=c(2,3))
for (gene in genes){
ymax = max(avgRatio[[gene]][is.finite(avgRatio[[gene]])])
if (is.infinite(ymax)) ymax = 1
barplot(avgRatio[[gene]],
main=gene,
xlab="Clusters",
ylab="Ratio of Average Spliced/Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids,
border=T)
}
Ratio of Average Spliced/Unspliced - Vwf, Ackr1, Fut7, Chst4, Gcnt1, Nfkbla
###Plot Average Spliced/Unspliced for particular genes
par(mfrow=c(2,3))
for (gene in genes){
ymax = max(avgRatio[[gene]][is.finite(avgRatio[[gene]])])
if (is.infinite(ymax)) ymax = 1
barplot(avgRatio[[gene]],
main=gene,
xlab="Clusters",
ylab="Ratio of Average Spliced/Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids,
border=T)
}
Ratio of Average Spliced/Unspliced - Bmx, Gja5, Acvrl1, Ackr1, Sele, Selp
###Plot Average Spliced/Unspliced for particular genes
par(mfrow=c(2,3))
for (gene in genes){
ymax = max(avgRatio[[gene]][is.finite(avgRatio[[gene]])])
if (is.infinite(ymax)) ymax = 1
barplot(avgRatio[[gene]],
main=gene,
xlab="Clusters",
ylab="Ratio of Average Spliced/Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids,
border=T)
}
Average Spliced/Unspliced Ratio for Each Cluster
###Plot Average Spliced/Unspliced for each cluster
par(mfrow = c(1,1))
ymax = max(avgRatio$Total[is.finite(avgRatio$Total)])
if (is.infinite(ymax)) ymax = 1
barplot(avgRatio$Total,
main="Average Spliced/Unspliced for each cluster",
xlab="Clusters",
ylab="Ratio of Average Spliced/Unspliced",
col = "Wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
Normalized Spliced & Unspliced - Mcam
###Plot normalized Unspliced and Spliced for particular genes
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
par(mfrow=c(2,2))
for (gene in genes){
ymax = max(avgUnSplNorm[[gene]][is.finite(avgUnSplNorm[[gene]])])
#new.cluster.ids <- is.infinite(avgUnSplNorm[[gene]])
if (is.infinite(ymax)) ymax = 1
barplot(avgUnSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
ymax = max(avgSplNorm[[gene]][is.finite(avgSplNorm[[gene]])])
if (is.infinite(ymax)) ymax = 1
barplot(avgSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Spliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
}
Normalized Spliced & Unspliced - Dll4, Esm1
###Plot normalized Unspliced and Spliced for particular genes
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
par(mfrow=c(2,2))
for (gene in genes){
ymax = max(avgUnSplNorm[[gene]][is.finite(avgUnSplNorm[[gene]])])
#new.cluster.ids <- is.infinite(avgUnSplNorm[[gene]])
if (is.infinite(ymax)) ymax = 1
barplot(avgUnSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
ymax = max(avgSplNorm[[gene]][is.finite(avgSplNorm[[gene]])])
if (is.infinite(ymax)) ymax = 1
barplot(avgSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Spliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
}
Normalized Spliced & Unspliced - Cd34, Apln
###Plot normalized Unspliced and Spliced for particular genes
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
par(mfrow=c(2,2))
for (gene in genes){
ymax = max(avgUnSplNorm[[gene]][is.finite(avgUnSplNorm[[gene]])])
#new.cluster.ids <- is.infinite(avgUnSplNorm[[gene]])
if (is.infinite(ymax)) ymax = 1
barplot(avgUnSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
ymax = max(avgSplNorm[[gene]][is.finite(avgSplNorm[[gene]])])
if (is.infinite(ymax)) ymax = 1
barplot(avgSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Spliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
}
Normalized Spliced & Unspliced - Cxcr4, Vim
###Plot normalized Unspliced and Spliced for particular genes
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
par(mfrow=c(2,2))
for (gene in genes){
ymax = max(avgUnSplNorm[[gene]][is.finite(avgUnSplNorm[[gene]])])
#new.cluster.ids <- is.infinite(avgUnSplNorm[[gene]])
if (is.infinite(ymax)) ymax = 1
barplot(avgUnSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
ymax = max(avgSplNorm[[gene]][is.finite(avgSplNorm[[gene]])])
if (is.infinite(ymax)) ymax = 1
barplot(avgSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Spliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
}
Normalized Spliced & Unspliced - Enpp2, Nes
###Plot normalized Unspliced and Spliced for particular genes
genes <- list(Ar = c("Bmx", "Gja5", "Acvrl1"),
Lv = c("Ackr1", "Sele", "Selp", "Vwf"),
HEV = c("Ackr1", "Fut7", "Chst4", "Gcnt1"),
CapEC1 = c("Nfkbia", "Dusp1", "Cxcl1", "Cxcl12"),
CapEC2 = c("Id1", "Id3", "Cdkn1a", "Cdkn2a"),
CapEC3 = c("Irf7", "Cxcl9", "Cxcl10"), #Cxcl11
CapEC4 = c("Enpp2"),
CapRC = c("Nes", "Cxcr4", "Vim", "Cd34", "Apln", "Dll4", "Esm1", "Mcam"))
allGenes <- as.character(unlist(genes))
genes <-allGenes
par(mfrow=c(2,2))
for (gene in genes){
ymax = max(avgUnSplNorm[[gene]][is.finite(avgUnSplNorm[[gene]])])
#new.cluster.ids <- is.infinite(avgUnSplNorm[[gene]])
if (is.infinite(ymax)) ymax = 1
barplot(avgUnSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
ymax = max(avgSplNorm[[gene]][is.finite(avgSplNorm[[gene]])])
if (is.infinite(ymax)) ymax = 1
barplot(avgSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Spliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
}
Normalized Spliced & Unspliced - Cxcl9, Cxcl10
par(mfrow=c(2,2))
for (gene in genes){
ymax = max(avgUnSplNorm[[gene]][is.finite(avgUnSplNorm[[gene]])])
#new.cluster.ids <- is.infinite(avgUnSplNorm[[gene]])
barplot(avgUnSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
ymax = max(avgSplNorm[[gene]][is.finite(avgSplNorm[[gene]])])
barplot(avgSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Spliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
}
Normalized Spliced & Unspliced - Cdkn2a, Irf7
par(mfrow=c(2,2))
for (gene in genes){
ymax = max(avgUnSplNorm[[gene]][is.finite(avgUnSplNorm[[gene]])])
#new.cluster.ids <- is.infinite(avgUnSplNorm[[gene]])
barplot(avgUnSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
ymax = max(avgSplNorm[[gene]][is.finite(avgSplNorm[[gene]])])
barplot(avgSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Spliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
}
Normalized Spliced & Unspliced - Id3, Cdkn1a
par(mfrow=c(2,2))
for (gene in genes){
ymax = max(avgUnSplNorm[[gene]][is.finite(avgUnSplNorm[[gene]])])
#new.cluster.ids <- is.infinite(avgUnSplNorm[[gene]])
barplot(avgUnSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
ymax = max(avgSplNorm[[gene]][is.finite(avgSplNorm[[gene]])])
barplot(avgSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Spliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
}
Normalized Spliced & Unspliced - Cxcl12, Id1
par(mfrow=c(2,2))
for (gene in genes){
ymax = max(avgUnSplNorm[[gene]][is.finite(avgUnSplNorm[[gene]])])
#new.cluster.ids <- is.infinite(avgUnSplNorm[[gene]])
barplot(avgUnSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
ymax = max(avgSplNorm[[gene]][is.finite(avgSplNorm[[gene]])])
barplot(avgSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Spliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
}
Normalized Spliced & Unspliced - Dusp1, Cxcl1
par(mfrow=c(2,2))
for (gene in genes){
ymax = max(avgUnSplNorm[[gene]][is.finite(avgUnSplNorm[[gene]])])
#new.cluster.ids <- is.infinite(avgUnSplNorm[[gene]])
barplot(avgUnSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
ymax = max(avgSplNorm[[gene]][is.finite(avgSplNorm[[gene]])])
barplot(avgSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Spliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
}
Normalized Spliced & Unspliced - Gcnt1, Nfkbia
par(mfrow=c(2,2))
for (gene in genes){
ymax = max(avgUnSplNorm[[gene]][is.finite(avgUnSplNorm[[gene]])])
#new.cluster.ids <- is.infinite(avgUnSplNorm[[gene]])
barplot(avgUnSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
ymax = max(avgSplNorm[[gene]][is.finite(avgSplNorm[[gene]])])
barplot(avgSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Spliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
}
Normalized Spliced & Unspliced - Fut7, Chst4
par(mfrow=c(2,2))
for (gene in genes){
ymax = max(avgUnSplNorm[[gene]][is.finite(avgUnSplNorm[[gene]])])
#new.cluster.ids <- is.infinite(avgUnSplNorm[[gene]])
barplot(avgUnSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
ymax = max(avgSplNorm[[gene]][is.finite(avgSplNorm[[gene]])])
barplot(avgSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Spliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
}
Normalized Spliced & Unspliced - Vwf, Ackr1
par(mfrow=c(2,2))
for (gene in genes){
ymax = max(avgUnSplNorm[[gene]][is.finite(avgUnSplNorm[[gene]])])
#new.cluster.ids <- is.infinite(avgUnSplNorm[[gene]])
barplot(avgUnSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
ymax = max(avgSplNorm[[gene]][is.finite(avgSplNorm[[gene]])])
barplot(avgSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Spliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
}
Normalized Spliced & Unspliced - Sele, Selp
par(mfrow=c(2,2))
for (gene in genes){
ymax = max(avgUnSplNorm[[gene]][is.finite(avgUnSplNorm[[gene]])])
#new.cluster.ids <- is.infinite(avgUnSplNorm[[gene]])
barplot(avgUnSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
ymax = max(avgSplNorm[[gene]][is.finite(avgSplNorm[[gene]])])
barplot(avgSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Spliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
}
Norm Unspliced and Spliced - Acvrl1, Ackr1
par(mfrow=c(2,2))
for (gene in genes){
ymax = max(avgUnSplNorm[[gene]][is.finite(avgUnSplNorm[[gene]])])
#new.cluster.ids <- is.infinite(avgUnSplNorm[[gene]])
barplot(avgUnSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
ymax = max(avgSplNorm[[gene]][is.finite(avgSplNorm[[gene]])])
barplot(avgSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Spliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
}
Normalized Spliced & Unspliced - Bmx, Gja5
par(mfrow=c(2,2))
for (gene in genes){
ymax = max(avgUnSplNorm[[gene]][is.finite(avgUnSplNorm[[gene]])])
#new.cluster.ids <- is.infinite(avgUnSplNorm[[gene]])
barplot(avgUnSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
ymax = max(avgSplNorm[[gene]][is.finite(avgSplNorm[[gene]])])
barplot(avgSplNorm[[gene]],
main=gene,
xlab="Clusters",
ylab="Normalized Spliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
}
Avg Spliced/Unspliced for each Cluster
avgRatio$Total <- NA
sumsSpl <- rowSums(avgSpl)
sumsUnSpl <- rowSums(avgUnSpl)
avgRatio$Total<- sumsSpl/sumsUnSpl
# Plot Average Spliced/Unspliced by each cluster
ymax = max(avgRatio$Total[is.finite(avgRatio$Total)])
barplot(avgRatio$Total,
main="Average Spliced/Unspliced for each cluster",
xlab="Clusters",
ylab="Ratio of Average Spliced/Unspliced",
col = "wheat",
ylim=c(0,ymax),
names.arg = new.cluster.ids)
Irf7
ggplot() +
geom_point(data = as.data.frame(rvel.cd.exp),
mapping = aes(x = Irf7_conv.nmat.norm,
y = Irf7_conv.emat.norm,
color = as.factor(og_expDat$og_sClustsPCA_t2X0.3_3_Y0.25_10_R0.3))) +
scale_fill_brewer(palette = "Set1") +
theme(legend.title = element_blank())
Plot
toBeP <- pcaVelP
genes2plot <- c("Chst4", "Apln", "Nes", "Ly6c1", "Pdgfra", "Pdpn", "Adm", "Pgf", "Sox17")
plist <- list()
genes2plot2 <- genes2plot[genes2plot %in% colnames(og_expDat)]
for (i in genes2plot2) {
p <- eval(substitute(ggplot() +
geom_point(data = as.data.frame(toBeP$epc@scores),
mapping = aes(x = PC1, y = PC2, color = og_expDat[[i]])) +
viridis::scale_color_viridis() +
geom_segment(data = as.data.frame(toBeP$garrows),
aes(x = x0, y = y0, xend = x1, yend = y1),
arrow = arrow(length = unit(0.2, "cm"))) +
ggtitle(i)
))
plist[[i]] <- print(p)
}
Plot
toBeP <- pcaVelP
genes2plot <- c("Chst4", "Apln", "Nes", "Ly6c1", "Pdgfra", "Pdpn", "Adm", "Pgf", "Sox17")
plist <- list()
genes2plot2 <- genes2plot[genes2plot %in% colnames(og_expDat)]
for (i in genes2plot2) {
p <- eval(substitute(ggplot() +
geom_point(data = as.data.frame(toBeP$epc@scores),
mapping = aes(x = PC1, y = PC2, color = og_expDat[[i]])) +
viridis::scale_color_viridis() +
geom_segment(data = as.data.frame(toBeP$garrows),
aes(x = x0, y = y0, xend = x1, yend = y1),
arrow = arrow(length = unit(0.2, "cm"))) +
ggtitle(i)
))
plist[[i]] <- print(p)
}
Plot
toBeP <- pcaVelP
genes2plot <- c("Chst4", "Apln", "Nes", "Ly6c1", "Pdgfra", "Pdpn", "Adm", "Pgf", "Sox17")
plist <- list()
genes2plot2 <- genes2plot[genes2plot %in% colnames(og_expDat)]
for (i in genes2plot2) {
p <- eval(substitute(ggplot() +
geom_point(data = as.data.frame(toBeP$epc@scores),
mapping = aes(x = PC1, y = PC2, color = og_expDat[[i]])) +
viridis::scale_color_viridis() +
geom_segment(data = as.data.frame(toBeP$garrows),
aes(x = x0, y = y0, xend = x1, yend = y1),
arrow = arrow(length = unit(0.2, "cm"))) +
ggtitle(i)
))
plist[[i]] <- print(p)
}
Plot
toBeP <- pcaVelP
genes2plot <- c("Chst4", "Apln", "Nes", "Ly6c1", "Pdgfra", "Pdpn", "Adm", "Pgf", "Sox17")
plist <- list()
genes2plot2 <- genes2plot[genes2plot %in% colnames(og_expDat)]
for (i in genes2plot2) {
p <- eval(substitute(ggplot() +
geom_point(data = as.data.frame(toBeP$epc@scores),
mapping = aes(x = PC1, y = PC2, color = og_expDat[[i]])) +
viridis::scale_color_viridis() +
geom_segment(data = as.data.frame(toBeP$garrows),
aes(x = x0, y = y0, xend = x1, yend = y1),
arrow = arrow(length = unit(0.2, "cm"))) +
ggtitle(i)
))
plist[[i]] <- print(p)
}
Plot
toBeP <- pcaVelP
genes2plot <- c("Chst4", "Apln", "Nes", "Ly6c1", "Pdgfra", "Pdpn", "Adm", "Pgf", "Sox17")
plist <- list()
genes2plot2 <- genes2plot[genes2plot %in% colnames(og_expDat)]
for (i in genes2plot2) {
p <- eval(substitute(ggplot() +
geom_point(data = as.data.frame(toBeP$epc@scores),
mapping = aes(x = PC1, y = PC2, color = og_expDat[[i]])) +
viridis::scale_color_viridis() +
geom_segment(data = as.data.frame(toBeP$garrows),
aes(x = x0, y = y0, xend = x1, yend = y1),
arrow = arrow(length = unit(0.2, "cm"))) +
ggtitle(i)
))
plist[[i]] <- print(p)
}
Plot
toBeP <- pcaVelP
genes2plot <- c("Chst4", "Apln", "Nes", "Ly6c1", "Pdgfra", "Pdpn", "Adm", "Pgf", "Sox17")
plist <- list()
genes2plot2 <- genes2plot[genes2plot %in% colnames(og_expDat)]
for (i in genes2plot2) {
p <- eval(substitute(ggplot() +
geom_point(data = as.data.frame(toBeP$epc@scores),
mapping = aes(x = PC1, y = PC2, color = og_expDat[[i]])) +
viridis::scale_color_viridis() +
geom_segment(data = as.data.frame(toBeP$garrows),
aes(x = x0, y = y0, xend = x1, yend = y1),
arrow = arrow(length = unit(0.2, "cm"))) +
ggtitle(i)
))
plist[[i]] <- print(p)
}
Chst4
ggplot() +
geom_point(data = as.data.frame(rvel.cd.exp),
mapping = aes(x = Chst4_conv.nmat.norm,
y = Chst4_conv.emat.norm,
color = as.factor(og_expDat$og_sClustsPCA_t2X0.3_3_Y0.25_10_R0.3))) +
scale_fill_brewer(palette = "Set1") +
theme(legend.title = element_blank())