gravatar

quan301

Quan Ngo

Recently Published

Swappie
NPS test
Change the colors
sales_by_years_cat_2_tbl <- bike_orderlines_wrangled_tbl %>% select(order_date, total_price, category_2) %>% mutate(year= year(order_date)) %>% group_by(year,category_2) %>% summarise(sales = sum(total_price)) %>% ungroup() %>% mutate(sale_text = scales::dollar(sales)) sales_by_years_cat_2_tbl %>% ggplot() + aes(x=year, y= sales, fill= category_2) + geom_col() + scale_y_continuous(labels = scales::dollar) + facet_wrap(~category_2, scales="free_y") + geom_smooth(method= "lm", se =FALSE) + theme_tq() + scale_fill_tq() + labs(title = "Revenue by Year and Category 2", x= "", y= "Revenue", fill= "Product Secondary Category")
Facet_wrap() with trend line
sales_by_years_cat_2_tbl %>% ggplot() + aes(x=year, y= sales, fill= category_2) + geom_col() + scale_y_continuous(labels = scales::dollar) + facet_wrap(~category_2, scales="free_y") + geom_smooth(method= "lm", se =FALSE)
Facet_wrap()
sales_by_years_cat_2_tbl %>% ggplot() + aes(x=year, y= sales, fill= category_2) + geom_col() + scale_y_continuous(labels = scales::dollar) + facet_wrap(~category_2, scales="free_y")
stora 2020 low
stora 2019 low
Stora 2018 low
Stora 2018
Stora 2018 high
Stora 2019 high
Stora 2019
Stora 2020
Stora 2020 high
Telia 2019 low
Telia 2019 high
Telia 2018 low
Telia 2018 high
Telia 2020 high
Telia 2020 low
Telia 2018
Telia 2019
Telia 2020
Finnair 2018 - High
Finnair 2019 - High
Finnair 2020 high
Finnair 2018
Finnair 2019
lastYear <- subset(finnair_stock,date >"2018-12-31"& date < "2020-01-01")
Finnair 2020 (timetk + tidyquant)
thisYear %>% plot_seasonal_diagnostics(date,adjusted,.interactive = TRUE,.feature_set=c("week","year","month.lbl","wday.lbl"),.geom = c("boxplot", "violin"),.title="Finnair 2020") thisYear <- subset(finnair_stock,date > "2019-12-31") finnair_stock <- tq_get("FIA1S.HE",get = "stock.prices")
Plot
ggplot(mpg,aes(displ,hwy,color=class)) + geom_smooth(method=lm,se = FALSE) + geom_point()
Plot
ggplot(mpg, aes(displ, hwy)) + geom_point() + geom_smooth(method = lm, se = FALSE)
Practise
ggplot(data=mpg,mapping = aes(x=displ, y= hwy, color=drv)) + geom_point() +geom_smooth(date=mpg,mapping = aes(linetype=drv,color=drv),se=FALSE)
Mutiple geom with only subcompact cars in smooth
ggplot(data=mpg,mapping= aes(x =displ,y=hwy))+ geom_point(mapping=aes(color=class)) +geom_smooth(data=filter(mpg,class=="subcompact"),se=FALSE)
Mutiple geom
ggplot(data=mpg,mapping= aes(x =displ,y=hwy,color=drv))+ geom_point() +geom_smooth()
Only take into account wheel type
ggplot(data=mpg) + geom_point(mapping=aes(x=displ, y=hwy,color=class)) + facet_grid(drv ~ .)
Combine by fuel type and wheel type
ggplot(data=mpg) + geom_point(mapping=aes(x=displ, y=hwy,color=class)) + facet_grid(drv ~ fl) add more dimensions by combining two variables
ggplot basic
ggplot(data=mpg) + geom_point(mapping=aes(x=displ, y=hwy,color=class))
ggplot with facet_wrap by ca manufacturer
ggplot(data=mpg) + geom_point(mapping=aes(x=displ, y=hwy,color=class)) +facet_wrap(~ manufacturer,nrow=10)